Practical strategies for generalized extreme value‐based regression models for extremes
نویسندگان
چکیده
The generalized extreme value (GEV) distribution is the only possible limiting of properly normalized maxima a sequence independent and identically distributed random variables. As such, it has been widely applied to approximate over blocks. In these applications, GEV properties such as finite lower endpoint when shape parameter ξ $$ \xi positive or loss moments due magnitude are inherited by finite-sample distribution. extent which realistic for data at hand ignored. Motivated overlooked consequences in regression setting, we here make three contributions. First, propose blended (bGEV) distribution, smoothly combines left tail Gumbel (GEV with = 0 =0 ) right Fréchet > >0 ). Our resulting has, therefore, unbounded support. Second, proposed principled method called property-preserving penalized complexity (P 3 {}^3 C) prior decide on existence first second priori. Third, reparametrization that provides more natural interpretation (possibly covariate-dependent) model parameters, turn helps define meaningful priors. We implement bGEV new parameterization P C approach R-INLA package readily available users. illustrate our methods simulation study reveals distributions comparable estimating under large-sample settings. Moreover, some small-sample settings show fit slightly outperforms fit. Finally, conclude an application NO 2 {}_2 pollution levels California illustrates suitability Bayesian framework.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولNonparametric Spatial Models for Extremes: Application to Extreme Temperature Data.
Estimating the probability of extreme temperature events is difficult because of limited records across time and the need to extrapolate the distributions of these events, as opposed to just the mean, to locations where observations are not available. Another related issue is the need to characterize the uncertainty in the estimated probability of extreme events at different locations. Although...
متن کاملNonparametric Spatial Models for Extremes: Application to Extreme Temperature
Estimating the probability of extreme temperature events is difficult because of limited records across time and the need to extrapolate the distributions of these events, as opposed to just the mean, to locations where observations are not available. Another related issue is the need to characterize the uncertainty in the estimated probability of extreme events at different locations. Although...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملFunctional ANOVA Models for Generalized Regression
Functional ANOVA models are considered in the context of generalized regression, which includes logistic regression, probit regression and Poisson regression as special cases. The multivariate predictor function is modeled as a speci ed sum of a constant term, main e ects and interaction terms. Maximum likelihood estimates are used, where the maximizations are taken over suitably chosen approxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environmetrics
سال: 2022
ISSN: ['1180-4009', '1099-095X']
DOI: https://doi.org/10.1002/env.2742